一、作图在解决物理问题中的应用(论文文献综述)
解毅[1](2021)在《物理教学中规范作图能力的培养》文中研究表明物理问题分析的关键在于通过图形建立物理情景。针对物理作图具有形象思维特征和抽象思维特点、物理学科特点以及核心素养对物理作图能力提出的一定要求,教师应充分发挥示范作用,重视物理图像的构建过程和规范作图的步骤,培养学生良好的作图习惯。同时,培养学生的规范作图能力也有助于学生学习物理的思维搭建,帮助学生分析物理问题,使学生迅速而准确地找到解决问题的切入点,提高学生的解题效率与质量。
汤奎[2](2021)在《初中生几何最值学习障碍调查及教学策略研究》文中认为几何课程在中学教育中占有重要的地位。几何最值问题,因灵活性高、综合性强,一直是初中几何教学的难点,也是学生学习的难点。因此,研究初中生几何最值学习障碍的类型及其产生的原因,不仅有利于一线教师更好地理解几何最值、提高教学效率,而且能促进初中生几何思维能力的发展。首先,通过文献分析法对几何最值学习障碍的核心概念、类型等进行综述,在此基础上明确研究问题、理清研究思路、搭建研究框架、选择研究方法,构建包含情感障碍和认知障碍的初中生几何最值学习障碍框架,并初步制定了情感态度问卷量表及几何最值内容测试卷,通过预测试对其进行修订后确立正式问卷和测试卷。其次,利用问卷及测试卷对成都市某中学391名初中生的几何最值学习障碍进行调查。通过对问卷结果的定量和定性分析发现,初中生几何最值情感方面主要存在三种类型的障碍:动机障碍、信念障碍、策略障碍,障碍率分别为46.44%、57.60%、47.74%。动机障碍包括内部动机、外部动机,具体表现在缺少学习兴趣,内部动机不足,外部动机过强;信念障碍包括知识信念、自我信念、过程信念,具体表现在自信心不足,学习被动;策略障碍包括元认知障碍、认知障碍,具体表现在缺少具体的学习策略,缺乏认知监控等。研究发现各情感障碍间的相关系数都在中等程度(0.327~0.638),即情感障碍间存在显着相关性。通过对测试结果的定量和定性分析发现,初中生在认知方面主要存在四种类型的障碍:记忆障碍、操作障碍、理解障碍和思维障碍,障碍率分别为80.32%、64.68%、90.36%、96.00%。记忆障碍包括表征障碍、编码障碍、存储障碍,具体表现为学生在记忆几何最值概念、性质、定理、基本模型时出现错误或遗漏;操作障碍包括作图障碍、表达障碍,具体表现为构造基本图形困难,辅助线的添加存在障碍,数学语言的转换能力弱等;理解障碍包括题意理解障碍、概念理解障碍、图形识别障碍、方法理解障碍,具体表现为不能理解问题题意,难以理解几何概念的本质属性,不能识别复杂图形中的几何最值基本模型,在理解和选择解决问题的最佳方法上存在障碍等;思维障碍包括分析障碍、推理障碍、思维定势障碍,具体表现为逻辑思维不清晰,归纳推理和演绎推理能力弱,思维定势阻碍问题的解决等。本研究还从年级、性别、认知障碍间关系等方面进行比较研究,发现不同性别、年级的初中生认知障碍类型无显着性差异,各认知障碍间存在显着相关性。最后,通过理论分析和测试,明确了初中生几何最值学习障碍的类型及其成因,建立了几何最值学习障碍框架。根据学习障碍成因分析,提出具体的教学策略,并给出指导教学设计的具体建议:利用多种表征方式引导学生加强概念记忆;总结基本模型增强学生图形识别能力;重视教学过程,规范操作程序;借助几何直观理解问题本质;加强学生使用具体解决几何最值问题策略的训练。
李朵[3](2021)在《高中“平面向量的运算”单元教学设计研究》文中研究指明随着时代的进步,教育也在一直更新变换,因此《普通高中数学课程标准(2017年版)》也孕育而生,课标中指出“高中数学课程承载着落实立德树人的根本任务,帮助学生掌握现代生活所必需的数学知识、技能、思想和方法,提升学生数学学科核心素养,重视以学科大概念为核心,以主题(单元)为引领,使课程内容结构化、情境化,促进数学学科核心素养的落实”。因此,主题单元的学习模式随之也火热起来,课标倡导进行主题单元的教学进而落实数学学科核心素养,主题单元是以学生自己探索、合作学习为主体,可以充分发挥学生的主动性与探究性,在探究的过程中达成数学学科核心素养,进而落实了课标数学学科核心素养的要求。因此该文旨在通过单元教学落实数学学科核心素养。为此,设置三个研究问题:(1)“平面向量的运算”单元教案设计是什么?(2)“平面向量的运算”单元教学实施效果如何?(3)通过教学反思,修改后的单元教案设计是什么?该研究以普通高中人教B版必修第二册第六章“平面向量的运算”单元进行教案的开发,包括向量的加法、向量的减法、数乘向量和向量的线性运算,采用观察法、录像带分析法、问卷调查法、访谈法进行研究。首先依据单元教学设计的实施步骤开发单元的教案设计,然后依据教案设计实施教学,通过课堂观察、学生测试卷调查、学生访谈深入分析教案设计的实施效果,最后基于教案设计的实施效果与对教师的访谈结果进行教学反思,从而对开发的教案进行改进与完善。通过研究得到三条结论:第一,数学学科核心素养的教学目标是进行单元教学设计的重要前提;第二,“平面向量的运算”单元教学设计充分结合了数学学科核心素养与课程内容;第三,“平面向量的运算”单元的教学培养了学生的数学学科核心素养。基于研究结论,提出三条建议:第一,教师进行单元教学设计时要制定数学学科核心素养维度的教学目标;第二,进行单元教学设计时应把课程内容与数学学科核心素养充分融合;第三,为落实课标要求的数学学科核心素养,教师应进行单元教学设计。
宋书璐[4](2021)在《图示法在小学数学“数与代数”教学中的运用研究》文中研究说明图示法是一种直观的数学解题方法。它既能为“数与代数”教学提供新的教学思路和视角;又能帮助学生更好地理清“数与代数”教学中的重点和难点;还能解决生活中的数学问题。本研究选取了K市J小学三年级426名学生和全校数学教师作为研究对象,并选取“数与代数”中有关数的认识、数的运算、问题解决中的六节典型性课例进行课例分析。综合采用文献分析法、问卷调查法、案例分析法等研究方法进行研究。针对教师和学生调查研究的不同维度,综合研究四个方面的问题;针对课例分析,主要研究运用图示法的优势以及出现的问题。具体研究问题如下:1.教师和学生调查研究教师和学生对图示法在“数与代数”教学中的使用情况、看法、建议以及所关注问题分别是什么?2.课例分析运用研究图示法在“数与代数”中有关数的认识、数的运算、问题解决教学内容中的运用优势和出现的问题分别是什么?通过对以上研究内容进行研究,得出相应的研究结果:1.教师和学生调查研究(1)“图示法”在小学数学课堂教学中使用频率较高。(2)教师和学生都比较肯定“图示法”的功能。(3)教师和学生都认为“图示法”应该适度使用,因需使用。(4)教师和学生都忽视了作图的规范性。2.课例分析运用研究第一,运用优势主要有:(1)能够帮助学生理清问题中的数量关系,给予学生解题思路。(2)能够快速地找到解题的关键点,提供解题思路。(3)可以使学生掌握一种解题方法,对今后做题时有所帮助。(4)能够在把原本枯燥乏味的数学问题变得有趣生动,增强了学生学习数学的兴趣和动力。第二,出现的问题主要有:(1)作图不规范,不用直尺画图或者画出的图大小、长度不一。(2)学生能正确画图,却无法正确说出图示法的名称。(3)个别学生不能根据题意画出正确的图。(4)画出的图单一。最后,依据调查和课例分析的结论得到的启示:(1)严格要求,重视作图的规范性。(2)适度使用,呈现图示法的多样性。(3)循序渐进,体会图示法的价值。
杨净灵[5](2021)在《高中数学人教A版新旧教材的比较研究 ——以“平面向量”部分为例》文中提出数学教材作为数学课程标准的重要载体,是教师与学生开展数学教学的有力依据。《普通高中数学课程标准(2017)》强调“高中数学课程以学生发展为本,落实立德树人根本任务”“提升数学学科核心素养”,在学科核心素养背景导向下,教育工作者如何解读数学教材,如何科学规范地使用数学教材等问题亟待解决。本文以“平面向量”部分为研究对象,对人教社先后于2004年和2019年出版的两套A版高中数学教材进行比较分析,并在深入解读对应课标的基础上,运用比较分析、内容分析、统计分析等方法,对新旧教材的章节设计特征、章节内容编排顺序等进行定性比较,以对平面向量部分有整体的把握,达成对教材内容结构和编排方式的总体认识,再深入比较两版教材的内容呈现方式、例习题配置、教材难度特征及数学文化特征,以更透彻地领悟平面向量内容,更全面地挖掘新教材的特点及价值,由此得出了以下结论:新教材展现了“以生为本”的“学材观”,为学生提供了更多学习机会;新教材重视整体与层次的关系,使学生深化对知识群的整体理解;新教材注重展现知识的形成发展过程,促进学生的有意义学习;新教材突出向量内容中数学文化的渗透,凸显了数学建模过程。在对新教材特点做出思考的基础上,笔者提出了对平面向量内容教与学的策略和建议,首先应从物理、代数、几何等多个角度理解向量内容,充分展现向量的“形”与“数”融合的特点,以发展学生数学核心素养;其次应重视挖掘向量运算的本质,注重通过类比的方式探析向量运算与数的运算的异同,以促进数学思维发展;最后应让学生经历各项内容的形成发展过程,以感悟数学研究方法。
荣媛媛[6](2021)在《高中生数形结合思想方法的应用现状研究》文中研究指明数形结合思想方法作为高中重要的数学思想方法之一,它对学生学习数学有着十分关键的作用,善用数形结合不仅可以帮助学生开阔思路,从更深层次理解知识,还可以获得解决问题的多种途径。本文在前人研究的基础上,结合课标要求及SOLO分类理论,设计了学生调查问卷、测试卷以及教师访谈,通过对数据的整理分析,笔者发现多数学生将数形结合看成是解题工具,没有上升到思想层面,学生整体对数形结合的应用意识不强,且在课下缺乏总结反思的习惯。在解题应用方面,学生总体在“以数解形”方面的能力比“以形助数”要好。从知识载体上看,学生在集合这一部分的数形结合能力最好,其次是平面向量、不等式和三角函数,再次是立体几何、解析几何、数列,应用最差的是函数。从年级上看,高三学生的数形结合应用水平比高二要好。学生在利用数形结合思想方法解题时,出现的主要问题为:无法转化属性表征、作图不准确、数形转化不等价等。根据学生的数形结合应用现状,笔者认为要想加强学生对数形结合的应用意识和能力,首先教师要更新教学观念,增强渗透数学思想的意识。其次教师就要重视在新授课上的渗透,挖掘教材中可用的数形结合教学素材,只有让学生认识到数形结合在知识内容的诸多方面都有广泛体现,学生才能逐渐将数形结合从解题方法上升为数学思想。第三,教师在教学时要注重数学三种语言的对应与转化,培养学生的数形转化意识。最后,教师要重视学生的作图和识图能力,学生作图能力弱,教师要多一些耐心,对学生出现的问题及时纠正,也要善用信息技术软件辅助教学。
王雪[7](2021)在《基于APOS理论的平面向量教学研究》文中进行了进一步梳理平面向量具有深刻的数学内涵、丰富的物理背景,具有“数与形”双重属性,是一个良好的数形结合载体,是一个有效的解题工具。但是,实际教学中由于平面向量内容过于抽象,致使学生难以理解其本质属性,学习效果不理想。因此,探寻合适的教学模式改善学生的学习现状是十分必要的。APOS理论是杜宾斯基提出的一种数学学习理论,其基本假设是:数学知识是学生在解决所感知的数学问题的过程中获得的。学生学习数学概念会经过“活动”“过程”“对象”这三个阶段,最后形成认知“图式”,在这个过程中学生学到的不只是知识本身的定义,更能体会到知识的形成过程,理解数学知识的本质。因此,在平面向量教学中应用APOS理论是具有理论意义的。本文采取的研究方法有文献研究法、问卷调查法、访谈法、案例分析法。首先对于APOS理论、平面向量教学相关的文献进行综述分析,形成对本研究的科学性认识;然后对APOS理论的来源、内涵、特点进行分析,对平面向量内容进行教材分析与《课程标准》解读,为论证APOS理论应用于平面向量教学的可行性与必要性提供理论依据;接下来,笔者通过测试卷、访谈的形式从学生、教师这两个视角探求平面向量教学现状,并针对发现的问题进行归因分析,为后文教学策略的制定、教学案例的设计提供实证依据。调查结果表明,学生对平面向量知识的理解程度基本能够达到操作水平、过程水平,很少能达到对象水平、图式水平;学生上一阶段的学习效果会对下一阶段的学习产生影响;学生对平面向量的符号表征理解较好,坐标表征次之,几何表征最差。同时从学生的试卷作答情况来看,学生对平面向量基本概念、法则、性质、定理等基础知识的掌握程度不够,综合应用知识能力不足,且存在粗心大意、马虎等不良的学习习惯。而教师对平面向量的教育价值普遍认可,尤为注重“向量运算”的教学,但教师对教材以及《课程标准》的重视程度不够,教学方式单一,对数学学习理论的认知度不高。最后,通过对两篇以APOS理论为指导的高中数学教学案例进行分析,得出基于APOS理论的平面向量教学策略:操作阶段的教学要设计合适的教学活动丰富学生的感性经验,并注重“类比”思想的运用;过程阶段需运用问题驱动的方式推动学生的思维发展;对象阶段需引入例题训练、变式训练,帮助学生掌握数学对象的本质;图式阶段需关注学生对知识图式的建构。并基于以上教学策略给出具体的教学设计案例,供一线数学教师参考。
王思敏[8](2021)在《动态数学技术融合初中动态几何问题的教学研究》文中认为随着教育信息化2.0时代的到来,动态数学技术与传统教学课堂的融合逐渐深入。《国家中长期教育改革和发展规划纲要(2010-2020年)》中指出“要提高教师应用信息技术水平,更新教学观念,改进教学方法,提高教学效果。鼓励学生利用信息手段主动学习、自主学习,增强运用信息技术分析解决问题能力,倡导在课堂中运用信息技术的手段来提升课堂效果”。将信息技术用于解决学科问题、改善教学方式成为教育改革的重要题项,动态数学技术与数学教学深度融合成为研究关注热点。在“几何与代数”方面考查中,动态几何问题由于其综合性强,变式性强,方式灵活,因此教学难度较大。传统教学,因为探究环境、技术的限制,难以剖析动态几何的解题思路。动态数学技术的融入,变革了学生分析问题和解决问题的方式。但在目前的研究中,对动态数学技术融合动态几何问题的教学研究较少,多见对现状的调查研究和解题的策略研究。基于以上思考,为了改善传统课堂现状,有效培养学生的几何直观素养,本研究以波利亚解题理论、数学多元表征理论为理论基础,利用Hawgent皓骏动态数学软件,探究动态数学技术融合动态几何问题教学设计及应用策略,以期为动态数学技术融入数学课堂的教学探索提供参考以及建议。本研究从理论研究和实践研究两方面展开。在理论研究层面,首先查阅相关文献,搜集整理国内外“动态几何问题”、“动态数学技术”的相关文献,多角度综述目前的研究现状、研究成果、研究问题。其次,对波利亚解题理论、数学多元表征理念展开理论思辨,探究并提出了动态数学技术融合动态几何问题的教学策略:(1)凸显关键信息,弄清问题本质;(2)问题串链提问,启发分析问题;(3)实验探究验证,渗透数学思想;(4)展示交流解答,分享错漏创意;(5)思维导图小结,加强一题多用;(6)注重一题多变,促进迁移创新;并且,针对每一策略加以具体实例解析。最后,根据教学策略及借助Hawgent皓骏动态数学软件,进行系列的动态几何问题的教学设计研究。在实践研究层面,实验班采用动态数学技术融合动态几何问题的教学,对照班采用传统“粉笔+黑板+PPT”教学。并且,通过实验封闭测试,问卷调查以及一线教师访谈等研究方法,进行检验动态数学技术融合动态几何问题教学策略的效果如何,探讨该教学策略对学生的数学学习成绩、数学解题方式及数学情感态度是否有影响。研究结果表明:采用动态数学技术融合动态几何问题的教学能够显着提升学生的数学学习成绩,对学生的数学解题方式也产生了积极正向影响,对其数学情感态度也有积极改善作用,同时一线教师对动态数学技术融合动态几何教学也持有认可的态度。
张佳颖[9](2021)在《高三学生力学图像表征调查研究》文中提出图像是高中物理教学和学习的重要组成部分,《普通高中物理课程标准(2017年版2020年修订)》十分重视图像在物理教学中的重要作用。图像问题解决即学生进行图像表征的过程。问题解决是一种复杂的思维过程,图像表征作为问题解决的重要形式,本质也是思维的外显表现。提高学生图像表征能力能够帮助学生迅速解决物理问题、促进思维发展。为了解高三学生图像表征现状、提高其图像表征能力,笔者对学生图像表征过程进行调查研究。本文对有关物理表征理论、思维理论等文献进行梳理,并在此基础上将图像表征过程划分为知觉物理图像、掌握和分析物理图像以及灵活运用物理图像三个阶段。随后与专家、教师讨论选出10道力学函数图像问题编制成测试卷对S市某学校300名高三学生进行测验调查。回收试卷后,对三个表征阶段的正答率进行统计以了解学生图像表征过程的整体情况;分析学生各个题目的作答过程,同时针对每道题目不同作答情况选取有代表性的学生进行访谈,最终结合20名一线教师访谈总结学生在图像表征过程中存在的问题。上述分析表明:(1)高三学生在力学图像表征过程中整体表现一般。大部分学生能够在知觉图像物理意义的基础上分析图像描述的运动过程,建构物理模型,但不能灵活运用图像解决物理问题。(2)学生在图像表征各阶段主要存在以下问题:在知觉物理图像阶段不能准确提取函数图像要素、理解图像物理意义;在掌握和分析图像阶段存在消极的思维定势、模型建构能力不足;在灵活运用物理图像阶段难以对函数图像进行严密地推理、不能根据问题情境选择恰当的问题表征方式、画图能力较差。(3)学生对图像表征功能的应用能力不足。大部分学生将函数图像视为数学工具,不善于利用图像表征在挖掘隐含信息、表述物理概念和规律以及描述物体运动过程等方面的功能。基于上述分析,提出以下教学建议:(1)培养学生图像表征意识,根据情境选择恰当表征方式;(2)深入挖掘图像物理意义,提高学生知觉图像能力;(3)基于图像建构物理模型,提高学生掌握和分析图像能力;(4)重视图像建构过程,提高学生灵活运用图像能力。
林心怡[10](2021)在《图形表征在初中物理教学中的应用研究》文中研究指明图形表征在物理学习中起到了至关重要的作用,本文研究的初中物理图形表征特指初中生在物理学习中常用的图形,主要是指示意图和函数图。示意图通过图片和线条简明展示了研究对象,函数图像的几何特性清晰显示了物理量之间量的关系或物理情景的变化情况。本文根据沪教版初中物理教材将初中物理的图形表征进行了分类,结合资料对图形表征应用能力进行划分。在所构建的理论基础框架下,本文通过问卷调查法和文献研究法进行研究。在理论研究的基础上,将学生图形表征能力分成了三个部分:提取信息能力、画“图”能力、用“图”能力,并根据这三方面能力提出了提高学生图形表征应用能力的相应策略。问卷调查时选取上海市某中等水平的初中里180余名初三学生进行问卷调查以及测试,分析初中学生对图形表征的态度和应用情况。再选取两个水平相当的班级,一个为实验班一个为对照班,运用相应策略开展实验研究。最后本文根据策略给每一类图形表征设计了相应的教学案例:《电流电压》《直线运动》《欧姆定律电阻》《路程-时间图像》,将所提的策略应用到教学实例中,丰富物理教学方法,也为后续的研究提供一定的借鉴。希望提高物理教师对学生图形表征能力培养的意识,在学习中为学生提供多一种的表征方式。本文主要由六部分构成:第一部分:介绍图形表征的研究背景、图形表征的国内外研究现状、研究意义及方法。第二部分:相关的理论基础的介绍,对图形表征的相关概念进行解释以及图形表征背后的理论支持。第三部分:参考沪教版物理教材内容以及前人的研究,对初中物理图形表征进行了分类。第四部分:结合理论对图形表征能力进行分类并提出相应的策略。第五部分:通过问卷调查,分析学生对图形表征的态度以及学生的应用情况。选取两个物理水平相当的班级进行实验研究。根据所提策略,将策略应用于四种不同类型的图形表征当中。以此期望该策略能真正运用到实际的教学之中,并在提高学生图形表征能力方面起到作用。第六部分:对本文的研究不足进行总结并对本文进行展望。总结本研究对于初中学生图形表征应用现状调查的不足之处,对本课题研究的进行反思以及对该研究进一步深入的展望。
二、作图在解决物理问题中的应用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、作图在解决物理问题中的应用(论文提纲范文)
(1)物理教学中规范作图能力的培养(论文提纲范文)
1 突出图的地位,培养学生作图意识 |
2 加强物理建模,培养对信息的提取、转换能力 |
3 实现精准作图,培养解答动力问题的能力 |
4 应用三维软件,培养空间维度转换能力 |
结语 |
(2)初中生几何最值学习障碍调查及教学策略研究(论文提纲范文)
摘要 |
Abstract: |
1 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究目的 |
1.4 研究方法和思路 |
1.5 研究创新之处 |
1.6 本章小结 |
2 文献综述 |
2.1 学习障碍 |
2.2 数学学习障碍 |
2.3 几何最值学习障碍 |
2.4 数学教学策略 |
2.5 本章小结 |
3 几何最值学习障碍问卷及测试卷编制 |
3.1 几何最值学习障碍问卷编制 |
3.2 几何最值学习障碍测试卷编制 |
3.3 本章小结 |
4 几何最值学习障碍调查实施与结果分析 |
4.1 问卷及测试卷调查的实施 |
4.2 调查与访谈结果统计及分析 |
4.3 本章小结 |
5 几何最值学习障碍类型及成因分析 |
5.1 几何最值学习障碍类型分析 |
5.2 几何最值学习障碍成因分析 |
5.3 本章小结 |
6 几何最值教学策略及教学设计 |
6.1 应对情感障碍的教学策略 |
6.2 应对认知障碍的教学策略 |
6.3 教学建议及教学设计 |
6.4 本章小结 |
7 研究不足与展望 |
7.1 研究不足 |
7.2 研究展望 |
参考文献 |
附录1 几何最值问卷调查表(预测试) |
附录2 几何最值内容测试卷(预测试) |
附录3 几何最值问卷调查表(正式测试) |
附录4 几何最值内容测试卷(正式测试) |
附录5 学生访谈提纲 |
附录6 教师访谈提纲 |
致谢 |
在校期间研究成果 |
(3)高中“平面向量的运算”单元教学设计研究(论文提纲范文)
摘要 |
Abstract |
一、绪论 |
(一)研究背景 |
(二)研究目的及意义 |
(三)研究问题 |
(四)主要术语界定 |
(五)创新点 |
二、理论基础及文献综述 |
(一)理论基础 |
1.概念 |
2.理论基础 |
(二)文献综述 |
1.单元教学设计 |
2. “平面向量的运算”单元教学设计 |
3.研究方法 |
(三)小结 |
三、研究方法 |
(一)研究对象 |
(二)研究工具 |
1.研究问题二 |
2.研究问题三 |
(三)数据收集与分析 |
1.研究问题一 |
2.研究问题二 |
3.研究问题三 |
(四)研究框架 |
四、结果与分析 |
(一) “平面向量的运算”单元教案设计 |
1.教学设计基础分析 |
2.单元教学目标 |
3.教学重难点 |
4.教学方法及手段 |
5.单元课时安排 |
6.单元目标检测 |
7.教学过程设计 |
(二) “平面向量的运算”单元教学实施效果 |
1.教学实施效果观测表结果分析 |
2.后测试卷结果分析 |
3.学生访谈结果分析 |
4.小结 |
(三) “平面向量的运算”单元教学反思 |
1.教案设计反思表结果分析 |
2.教师访谈结果分析 |
3.完善教案设计 |
4.小结 |
五、结论与建议 |
(一)结论 |
(二)建议 |
参考文献 |
附录A “平面向量的运算”单元后测试卷 |
附录B 课时目标检测试题 |
附录C 单元教学实施效果学生访谈提纲 |
附录D 单元教学反思教师访谈提纲 |
附录E “向量的加法”教案设计(第一版) |
附录F “向量的减法”教案设计(第一版) |
附录G “数乘向量”教案设计(第一版) |
附录H “向量的线性运算”教案设计(第一版) |
附录I “向量的加法”教案设计(第二版) |
附录J “向量的减法”教案设计(第二版) |
附录K “数乘向量”教案设计(第二版) |
致谢 |
(4)图示法在小学数学“数与代数”教学中的运用研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 课标注重小学生数学思想和方法的培养 |
1.1.2 “数与代数”在小学数学教学中的重要地位 |
1.1.3 问题解决在小学数学课程标准中的重要地位 |
1.1.4 图示法在“数与代数”教学中运用的重要性 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 论文结构 |
第2章 文献综述 |
2.1 图示法的内涵研究 |
2.2 图示法的分类研究 |
2.3 小学数学“数与代数”教学的理论研究 |
2.3.1 小学数学“数与代数”课程内容的教育价值 |
2.3.2 数形结合思想的认识 |
2.3.3 “数与代数”领域的教学策略 |
2.4 图示法在小学数学“数与代数”教学中的应用研究 |
2.4.1 有关线段图的应用研究 |
2.4.2 有关示意图的应用研究 |
2.4.3 有关矩形面积图的应用研究 |
2.4.4 有关实物图的应用研究 |
2.4.5 有关点子图的应用研究 |
2.5 文献述评 |
第3章 图示法的概述 |
3.1 图示法 |
3.2 图示法的理论基础 |
3.2.1 斯佩里左右脑分工理论 |
3.2.2 建构主义学习理论 |
3.2.3 认知心理学表征理论 |
3.3 图示法的分类 |
3.3.1 实物图 |
3.3.2 示意图 |
3.3.3 线段图 |
3.3.4 矩形面积图 |
3.3.5 点子图 |
3.4 图示法的功能 |
3.4.1 图示法是通向数学抽象性与儿童思维形象性的桥梁 |
3.4.2 图示法是提供儿童进行数学推理的直观支撑工具 |
3.4.3 图示法是数学建模的手段和模型的表征形式 |
3.4.4 图示法是数形结合思想方法不可或缺的工具 |
3.4.5 图示法是启迪学生理解数学知识的基本方式 |
第4章 图示法在“数与代数”教学中的运用现状调查研究 |
4.1 研究目的 |
4.2 研究对象 |
4.3 研究方法 |
4.3.1 文献分析法 |
4.3.2 问卷调查法 |
4.3.3 案例分析法 |
4.4 调查问卷设计与说明 |
4.4.1 教师调查问卷设计 |
4.4.2 学生调查问卷设计 |
4.5 教师调查问卷数据分析 |
4.5.1 教师对“图示法”的了解情况 |
4.5.2 教师对“图示法”的使用情况 |
4.5.3 “图示法”的适用范围 |
4.5.4 “图示法”的使用方式 |
4.5.5 “图示法”的呈现方式 |
4.5.6 教师使用“图示法”关注的问题 |
4.6 学生调查问卷数据分析 |
4.6.1 学生对“画图”方法的接触 |
4.6.2 学生对“画图”方法的使用情况 |
4.6.3 学生将“画图”方法引入“数与代数”教学的看法 |
4.6.4 学生对小学数学“数与代数”领域选用“画图”方法的建议 |
4.6.5 “数与代数”领域教学中使用“画图”方法的优点 |
4.6.6 学生运用“画图”方法的反馈 |
第5章 图示法在“数与代数”教学中的课例分析 |
5.1 图示法在数的认识教学中的课例分析 |
5.1.1 分数的初步认识教学课例 |
5.1.2 小数的初步认识教学课例 |
5.2 图示法在数的运算教学中的课例分析 |
5.2.1 多位数乘一位数的口算乘法教学课例 |
5.2.2 两位数乘两位数的笔算乘法教学课例 |
5.3 图示法在问题解决教学中的课例分析 |
5.3.1 求一个数的几倍是多少教学课例 |
5.3.2 归一问题教学课例 |
5.4 课例综合分析 |
第6章 结论与启示 |
6.1 研究结论 |
6.2 研究启示 |
6.3 研究不足及进一步解决的问题 |
参考文献 |
附录 |
附录 A 图示法在”数与代数”教学中的运用研究教师调查问卷 |
附录 B 图示法在”数与代数”教学中的运用研究学生调查问卷 |
攻读学位期间发表的学术论文和研究成果 |
致谢 |
(5)高中数学人教A版新旧教材的比较研究 ——以“平面向量”部分为例(论文提纲范文)
摘要 |
Abstract |
第一章 问题的提出 |
一、研究背景 |
(一)核心素养导向下的数学教材变革 |
(二)平面向量内容在新教材中的调整 |
二、研究的主要问题 |
三、研究意义 |
(一)理论意义 |
(二)实践意义 |
第二章 高中数学教材比较研究的理论认识 |
一、理论基础 |
(一)教材评价 |
(二)教材难度模型 |
二、文献综述 |
(一)国外数学教材的比较研究 |
(二)国内数学教材的比较研究 |
(三)关于平面向量教材比较的相关研究 |
第三章 研究设计 |
一、研究对象 |
二、研究方法 |
(一)文献分析法 |
(二)内容分析法 |
(三)比较分析法 |
(四)统计分析法 |
三、研究框架 |
第四章 课程标准中平面向量内容的比较 |
一、课程标准基本理念的比较 |
二、课标中平面向量内容要求的比较 |
第五章 新旧教材平面向量部分的比较 |
一、章节设计特征的比较 |
(一)版面设计的比较 |
(二)体例结构的比较 |
二、章节内容编排的比较 |
三、内容呈现方式的比较 |
(一)概念呈现方式的比较 |
(二)原理呈现方式的比较 |
四、例习题配置的比较 |
(一)例习题数量的比较 |
(二)例习题类型的比较 |
五、教材难度比较 |
(一)教材难度模型 |
(二)知识团广度的比较 |
(三)知识团深度的比较 |
(四)知识团习题综合难度的比较 |
(五)课时安排的比较 |
(六)教材难度的比较 |
六、数学文化的比较 |
(一)数学文化栏目分布的比较 |
(二)数学文化内容分布的比较 |
(三)数学文化运用方式的比较 |
第六章 比较研究的结论与思考 |
一、比较研究的结论 |
(一)平面向量部分课标要求的比较结论 |
(二)平面向量部分整体信息的比较结论 |
(三)平面向量部分深层特征的比较结论 |
二、对新教材编写特点的思考 |
第七章 比较思考下的教与学的建议 |
一、教与学的策略及建议 |
(一)多角度理解向量内容,发展数学核心素养 |
(二)重视挖掘向量运算本质,促进数学思维发展 |
(三)经历向量内容的形成发展过程,感悟数学研究方法 |
二、对数学课例的分析 |
(一)课例展示 |
(二)对课例的分析与思考 |
第八章 研究成果与展望 |
一、研究成果 |
二、研究不足与展望 |
参考文献 |
附录 |
附录1 新旧教材“平面向量”部分知识团深度赋值表 |
攻读硕士学位期间所发表的学术论文 |
致谢 |
(6)高中生数形结合思想方法的应用现状研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
二、研究目的 |
三、研究意义 |
(一)有助于教师优化教学方法 |
(二)有助于学生理解数学知识 |
(三)有助于学生数学思维能力的发展 |
(四)有助于学生更好地认识世界 |
第二章 文献综述 |
一、数形结合的产生与发展 |
(一)“数”与“形”概念的产生 |
(二)古代时期的数形结合 |
(三)近现代时期的数形结合 |
二、国内研究现状 |
(一)数形结合在解题中的应用 |
(二)数形结合在教学中的渗透及作用 |
(三)数形结合的认知心理研究 |
(四)文献综述总结 |
三、理论基础 |
(一)SOLO分类理论 |
(二)表征理论 |
(三)解题程序理论 |
第三章 对数形结合的基本认识 |
一、数形结合思想的解题原则 |
(一)等价性原则 |
(二)双向性原则 |
(三)简单性原则 |
二、数形结合的应用类型 |
(一)以形助数 |
(二)以数解形 |
(三)数形并重 |
三、数形结合思想方法在教材中的体现 |
(一)必修一 |
(二)必修二 |
(三)必修三 |
(四)必修四 |
(五)必修五 |
四、数形结合思想方法在高考中的体现 |
第四章 研究设计 |
一、研究问题 |
二、研究思路 |
三、研究对象 |
四、研究方法 |
(一)文献研究法 |
(二)调查法 |
(三)访谈法 |
五、研究工具 |
(一)调查问卷的设计 |
(二)调查问卷的信度与效度 |
(三)测试卷的编制 |
(四)测试卷对学生数形结合应用水平的划分 |
(五)教师访谈问卷的编制 |
第五章 研究结果的统计与分析 |
一、高中生对数形结合思想方法的理解情况 |
(一)高中生对数形结合思想方法的基本认识 |
(二)高中生数形转化能力的基本情况 |
(三)高中生应用数形结合思想方法的思维习惯 |
(四)高中生获得数形结合思想方法的来源途径 |
(五)调查问卷统计结果分析 |
二、高中生运用数形结合思想方法解题的水平分布 |
(一)集合 |
(二)函数 |
(三)数列 |
(四)解析几何 |
(五)三角函数 |
(六)不等式 |
(七)平面向量 |
(八)立体几何 |
三、测试卷各维度总体与对比分析 |
(一)总体分析 |
(二)各年级对比分析 |
(三)测试卷统计结果分析 |
四、教师访谈结果与分析 |
五、研究结论 |
第六章 数形结合思想方法的渗透策略 |
一、更新教学观念,增强渗透数形结合思想方法的教学意识 |
二、挖掘教材中蕴含数形结合思想方法的素材 |
(一)概念教学中的数形结合素材的挖掘 |
(二)命题教学中的数形结合素材的挖掘 |
(三)例题中的数形结合素材的挖掘 |
(四)习题中的数形结合素材的挖掘 |
三、注重数学三种语言的对应与转化教学 |
四、合理利用信息技术,加强学生的识图和作图能力 |
参考文献 |
附录1 学生调查问卷及测试卷 |
附录2 教师访谈问卷 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(7)基于APOS理论的平面向量教学研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)平面向量在高中数学中的地位 |
(二)平面向量的教育价值 |
(三)平面向量内容教学中存在的问题 |
(四)APOS理论应用于数学教学的重要意义 |
二、研究内容 |
三、研究意义 |
(一)理论意义 |
(二)实践意义 |
四、研究方法 |
(一)文献研究法 |
(二)问卷调查法 |
(三)访谈法 |
(四)案例分析法 |
五、论文创新之处 |
第二章 文献综述 |
一、APOS理论研究现状 |
(一)APOS理论国外研究现状 |
(二)APOS理论国内研究现状 |
二、平面向量研究现状 |
(一)平面向量国外研究现状 |
(二)平面向量国内研究现状 |
三、文献综述评述 |
第三章 APOS理论应用于平面向量教学的可行性、必要性分析 |
一、Dubinsky的 APOS理论 |
(一)APOS理论的来源 |
(二)APOS理论的四阶段模型 |
(三)APOS理论的特点 |
二、平面向量教材分析与《课程标准》解读 |
(一)平面向量的教材分析 |
(二)《课程标准》对平面向量内容的要求 |
三、平面向量教学中应用APOS理论的可行性分析 |
(一)可行性分析——教学内容的“二重性” |
(二)可行性分析——教材对比分析 |
(三)可行性分析——《课程标准》解读 |
四、平面向量教学中应用APOS理论的必要性分析 |
第四章 平面向量教与学现状调查研究 |
一、学生学习平面向量现状的调查 |
(一)研究对象的选择 |
(二)平面向量理解水平划分 |
(三)测试卷的编制 |
(四)测试卷信效度检验 |
(五)测试实施过程 |
二、平面向量教学现状的调查 |
(一)访谈对象的选择 |
(二)访谈问题 |
(三)访谈实施过程 |
三、调查结果统计与分析 |
(一)学生平面向量的学习现状分析 |
(二)教师平面向量教学现状的分析 |
(三)学生存在问题的归因分析 |
第五章 基于APOS理论的平面向量教学研究 |
一、APOS理论模式下的教学案例分析 |
(一)教学案例个案分析 |
(二)教学案例比较分析 |
二、基于APOS理论的平面向量教学策略 |
(一)操作阶段的教学策略 |
(二)过程阶段的教学策略 |
(三)对象阶段的教学策略 |
(四)图式阶段的教学策略 |
三、APOS理论下的平面向量教学设计 |
(一)基于APOS理论的教学目标设计 |
(二)基于APOS理论的教学方法设计 |
(三)基于APOS理论的教学环节设计 |
(四)基于APOS理论的教学评价设计 |
四、APOS理论下的平面向量教学设计案例 |
(一)《平面向量的概念》教学设计 |
(二)《向量的数量积》教学设计 |
(三)《平面向量基本定理》教学设计 |
(四)《余弦定理》教学设计 |
第六章 研究结论与展望 |
一、研究结论 |
二、研究不足 |
三、研究展望 |
注释 |
参考文献 |
附录1 平面向量测试卷 |
附录2 教师访谈提纲 |
攻读硕士期间所发表的学术论文 |
致谢 |
(8)动态数学技术融合初中动态几何问题的教学研究(论文提纲范文)
中文摘要 |
Abstract |
第一章 前言 |
一、研究背景和问题 |
二、研究目的与意义 |
三、研究框架与思路 |
四、研究方法与内容 |
第二章 相关研究概述 |
一、相关概念界定 |
(一)动态数学技术 |
(二)初中动态几何问题 |
二、初中动态几何问题的相关研究概述 |
三、动态数学技术相关研究概述 |
四、小结与思考 |
第三章 动态数学技术融合初中动态几何问题的教学策略及应用案例 |
一、基本理论概述 |
(一)波利亚解题理论 |
(二)数学多元表征学习理念 |
二、Hawgent皓骏动态数学软件的基本功能 |
三、动态几何问题典型积件设计案例 |
四、动态数学技术融合初中动态几何问题教学的教学策略及应用案例 |
(一)凸显关键信息,弄清问题本质 |
(二)问题串链提问,启发分析问题 |
(三)实验探究验证,渗透数学思想 |
(四)展示交流解答,分享错漏创意 |
(五)思维导图小结,加强一题多用 |
(六)注重一题多变,促进迁移创新 |
第四章 动态数学技术融合初中动态几何问题教学实验研究 |
一、实验方案设计 |
(一)实验目的 |
(二)实验假设 |
(三)实验对象 |
(四)实验变量 |
(五)实验方式 |
(六)实验材料 |
二、实验结果与数据分析 |
(一)前测成绩结果与分析 |
(二)后测成绩的结果与分析 |
(三)学生问卷调查结果分析 |
(四)教师访谈结果分析 |
第五章 动态数学技术融合动态几何问题教学的课例研究 |
一、课例一《动态几何问题之等腰三角形》 |
(一)教学设计 |
(二)教学过程对比分析 |
(三)教学实录对比及评析 |
二、课例二《动态几何问题之直线型轨迹问题》 |
(一)教学设计 |
(二)教学过程对比分析 |
(三)教学实录对比及评析 |
三、教学评析 |
(一)自我反思 |
(二)专家点评 |
第六章 研究结论与反思 |
一、研究结论 |
二、研究反思 |
三、研究展望 |
参考文献 |
附录 |
附录1 动态几何问题之等腰三角形后测卷 |
附录2 动态几何问题的实验教学调查问卷 |
附录3 访谈提纲 |
硕士学习期间发表论文及研究成果 |
致谢 |
(9)高三学生力学图像表征调查研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 问题的提出 |
1.1.1 课程标准对学生图像表征能力的重视 |
1.1.2 高考对图像问题的考查增加 |
1.1.3 图像表征有利于实现物理问题解决 |
1.1.4 图像表征有利于培养学生科学思维 |
1.2 图像表征研究现状 |
1.2.1 物理问题表征研究现状 |
1.2.2 物理图像表征研究现状 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 现实意义 |
1.4 研究方法 |
2 相关概念界定与研究理论基础 |
2.1 物理图像 |
2.1.1 物理图像界定 |
2.1.2 物理图像统计 |
2.2 物理图像表征 |
2.2.1 物理问题表征 |
2.2.2 物理图像表征 |
2.3 研究理论基础 |
2.3.1 信息加工理论 |
2.3.2 戴尔“经验之塔”理论 |
2.3.3 问题解决的表征态理论 |
3 力学图像表征过程分析 |
3.1 图像表征过程分析说明 |
3.2 图像表征过程阶段划分 |
3.2.1 知觉物理图像阶段 |
3.2.2 掌握和分析物理图像阶段 |
3.2.3 灵活运用物理图像阶段 |
3.3 学生图像表征典型案例分析 |
4 高三学生力学图像表征调查研究 |
4.1 测验调查 |
4.1.1 测验目的及对象 |
4.1.2 测验编制 |
4.1.3 测验实施 |
4.1.4 测验评价 |
4.2 测验调查分析 |
4.2.1 高三学生力学图像表征整体分析 |
4.2.2 高三学生力学图像表征过程分析 |
4.2.3 调查结论 |
4.3 教师访谈调查 |
4.3.1 访谈目的 |
4.3.2 访谈对象选取 |
4.3.3 访谈提纲设计 |
4.3.4 访谈结果分析 |
5 提高学生图像表征能力的教学建议 |
5.1 培养学生图像表征意识,根据情境选择恰当表征方式 |
5.2 深入挖掘图像物理意义,提高学生知觉图像能力 |
5.3 基于图像建构物理模型,提高学生掌握和分析图像能力 |
5.4 重视函数图像建构过程,提高学生灵活运用图像能力 |
6 结论与展望 |
6.1 调查结论 |
6.2 问题与展望 |
参考文献 |
附录1:高三学生力学图像表征测验试卷 |
附录2:教师访谈提纲 |
致谢 |
(10)图形表征在初中物理教学中的应用研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.1.1 图形表征适用于物理学科的表达 |
1.1.2 课程标准对图形表征的要求 |
1.1.3 图形表征在中高考的应用 |
1.1.4 学生在表征方面存在的困难 |
1.2 研究现状 |
1.2.1 国内研究现状 |
1.2.2 国外研究现状 |
1.3 研究内容与意义 |
1.3.1 研究内容 |
1.3.2 研究意义 |
1.4 研究方法 |
第二章 理论基础 |
2.1 相关概念的界定 |
2.1.1 表征 |
2.1.2 问题表征 |
2.1.3 图形表征 |
2.2 相关理论基础 |
2.2.1 信息加工理论 |
2.2.2 学习迁移理论 |
2.2.3 知识可视化理论 |
第三章 初中物理图形表征分类 |
3.1 概念规律图形表征 |
3.1.1 光路图形表征 |
3.1.2 力学图形表征 |
3.1.3 电磁图形表征 |
3.2 时空关系图形表征 |
3.3 结构联系图表征 |
3.3.1 电路图表征 |
3.3.2 结构图表征 |
3.4 函数图表征 |
3.4.1 波形图表征 |
3.4.2 运动学函数图表征 |
3.4.3 电学函数图表征 |
第四章 初中物理图形表征能力及培养 |
4.1 初中物理图形表征能力 |
4.1.1 提取信息能力 |
4.1.2 画图能力 |
4.1.3 用图能力 |
4.2 初中物理图形表征能力培养 |
4.2.1 提取信息策略 |
4.2.2 画图策略 |
4.2.3 用图策略 |
第五章 图形表征在初中物理教学的应用现状研究 |
5.1 图形表征的应用现状调查 |
5.1.1 问卷设计 |
5.1.2 调查样本的选取 |
5.1.3 数据统计与分析 |
5.2 前后测结果分析 |
5.2.1 前测分析 |
5.2.2 后测分析 |
5.3 教学案例 |
5.3.1 应用概念规律图形表征案例 |
5.3.2 应用时空关系图形表征案例 |
5.3.3 应用结构联系图形表征案例 |
5.3.4 应用函数图形表征案例 |
第六章 总结与展望 |
6.1 研究总结 |
6.2 研究的不足 |
6.3 展望 |
参考文献 |
附录 A |
附录 B |
致谢 |
四、作图在解决物理问题中的应用(论文参考文献)
- [1]物理教学中规范作图能力的培养[J]. 解毅. 兵团教育学院学报, 2021(05)
- [2]初中生几何最值学习障碍调查及教学策略研究[D]. 汤奎. 四川师范大学, 2021(12)
- [3]高中“平面向量的运算”单元教学设计研究[D]. 李朵. 辽宁师范大学, 2021(08)
- [4]图示法在小学数学“数与代数”教学中的运用研究[D]. 宋书璐. 云南师范大学, 2021(08)
- [5]高中数学人教A版新旧教材的比较研究 ——以“平面向量”部分为例[D]. 杨净灵. 哈尔滨师范大学, 2021(08)
- [6]高中生数形结合思想方法的应用现状研究[D]. 荣媛媛. 哈尔滨师范大学, 2021(08)
- [7]基于APOS理论的平面向量教学研究[D]. 王雪. 哈尔滨师范大学, 2021(08)
- [8]动态数学技术融合初中动态几何问题的教学研究[D]. 王思敏. 广西师范大学, 2021(09)
- [9]高三学生力学图像表征调查研究[D]. 张佳颖. 河北师范大学, 2021(12)
- [10]图形表征在初中物理教学中的应用研究[D]. 林心怡. 上海师范大学, 2021(07)