一、粉喷桩加固软土地基的工程实例与分析(论文文献综述)
冯彦铭[1](2020)在《深厚软土地基运营公路桥头跳车非开挖处治技术研究》文中认为我国东南沿海地区高速公路大多建设于深厚软土地基上,由于在早期设计或施工中未对软基进行合理有效控制,加之运营后不断增加的交通量,使得软土地区相当比例的高速公路在投入运营后仍出现较大沉降,进而引发了桥头跳车病害问题,给交通运营和养护带来很大的影响。针对深厚软土地基运营公路桥头跳车病害问题,各高校、科研院所和设计单位展开相关的了研究与处治,但效果都并不显着,且目前传统的处治措施需要对道路进行占道施工,与运营公路面临的较大的交通压力等难以匹配。本论文以甬台温高速温州段大修EPC项目某路桥过渡段为工程实例,对该段运营公路开展深厚软土地基运营公路桥头跳车非开挖处治技术研究。在前期地勘资料收集及野外调查的成果基础上,充分运用沉降理论计算方法和数值模拟技术对该桥头路基段进行沉降预测。由此提出适合该工程项目的深厚软基区运营公路非开挖处治技术及评价其处治效果,并对施工过程进行稳定性研究。本论文通过研究获得以下进展:(1)对当前国内外学者对桥头跳车处治方面的研究与理论进行了分析,对非开挖处治技术在运营公路上的应用进行了总结,为处治技术研究提供了思路和方法。(2)系统阐述了甬台温高速温州段某桥头沉降段的地质环境;在此基础上对该项目桥头跳车的形成因素和现状进行了分析,为理论计算与数值模拟奠定了基础。(3)通过现场工程地质调研工作,获得研究对象相关现场资料和土体物理力学参数,选择具有代表性的控制断面,采用分层总和法计算得出未处理地基的后续沉降量,并根据固结理论得出沉降稳定所需要的剩余时间。(4)利用FLAC3D软件建立了桥头路基段的三维数值模型,在此基础上进行流固耦合分析,计算后续沉降量,与理论计算得出沉降量进行对比。也为下文处治效果提供了评价比对的依据。(5)对不同思路下的处治技术进行对比分析,结合该桥头路堤段的地质情况和运营要求提出了“路堤侧向引孔置换轻质材料”与“侧向辐射注浆”的技术方案。并利用FLAC3D软件模拟这两种处治措施在不同参数下对沉降的控制效果,并在此基础上提出一种处治深厚软土地基运营公路桥头跳车的组合方案:路堤两侧辐射注浆加固地基土形成8m厚人工硬壳层,并结合路堤横向自上而下梅花桩布置引孔置换轻质材料,孔径为1m。该组合方案处治后沉降控制比例达到32.44%,确定了该处治方案的有效性。对路堤侧向引孔施工进行模拟,将施工过程分为不同工况,通过模拟结果对施工稳定性进行评价,确定处治措施在本项目中的可行性。
梅健[2](2020)在《粉喷桩技术在加固软土地基工程中的应用研究》文中认为得益于地基处理及技术的进步,道路穿越禁忌区域越来越少,尤其是软土地基的加固处理技术的推广应用大大扩展了道路穿越范围。依托实际工程,本文分析了粉喷桩加固软土地基的机理,对于相关的设计参数进行了详细说明,然后详细介绍了粉喷桩在加固软土地基中的施工工艺和关键工序施工参数,最后通过静载试验检测了复合地基的承载能力,结果证明粉喷桩在软土地基加固处理中具有较好的适用性。
郭尤林[3](2019)在《串联式组合桩复合地基承载机理及其设计计算方法研究》文中提出串联式组合桩复合地基是一种新型的桩体复合地基型式,由“固体”与“散体”构成的上下同轴串联桩体,其中“固体”为2种不同刚度的粘结性材料构成,分别为素混凝土与浆固碎石,“散体”为碎石散体材料。在上部荷载的作用下,该新型复合地基型式克服了散体材料桩强度低且在土层性质较差时,桩体侧向鼓胀变形较大甚至破坏土体结构的缺陷。此外,三种不同刚度组成的上下同轴串联式组合桩体可有效的将荷载传递至更深广的土体中,提高了复合地基的承载能力,减小了地基沉降变形。当前,随着组合型复合地基概念的进一步拓宽,衍生出多种组合型桩体复合地基模型,均不同程度地提高了散体材料的承载能力,且在工程实践中得到成功应用,然而,对实散体组合桩复合地基的研究成果较少,特别是实散体组合桩复合地基的承载机理、荷载传递机制及受力变形计算理论研究还处探索阶段,有待进一步深入研究。为此,本文结合国家自然科学基金项目(51478178)“交通移动荷载下刚性桩复合地基承载机理及其受力变形分析方法研究”,基于理论分析、数值模拟与现场试验,对柔性基础下串联式组合桩复合地基的承载机理及其设计计算方法进行系统深入的研究。本文首先系统阐述了串联式组合桩复合地基组成材料的物理特性与力学特性,并对软土地基土进行了工程应用评价;基于散体材料桩复合地基破坏失稳的特征,在桩体组成材料受力变形特性的研究基础上,提出了串联式组合桩复合地基,并介绍了串联式组合桩的结构组成与结构特点,进而开展串联式组合桩复合地基施工工艺研究。其次,分析了桩体复合地基的桩体荷载传递机理与桩土体系荷载传递机理,并基于自主研发的分级加载系统与压力测试方法,揭示了不同桩段长度比条件下串联式组合桩的荷载机理,建立了串联式组合桩的力学计算模型与微分控制方程,阐明了其受力变形不仅与桩体构成材料及规格相关,而且与其赋存的工程地质条件相关,主要影响因素是褥垫层参数、桩段参数、桩径、桩间距以及土模量参数等。在分析复合地基受力变形特征的基础上,对不同刚度桩体复合地基的承载力与沉降变形计算方法进行了适宜性评价,提出了不同刚度桩体复合地基承载力与沉降变形的计算方法。基于滑块破坏理论,采用计算深基础承载力Meyerhof法,建立了2种串联式组合桩极限承载力计算模型,并通过随机优化算法确定临界滑动面,提出了串联式组合桩复合地基极限承载力计算方法。基于串联式组合桩复合地基力学变形机理,将串联式组合桩复合地基加固区的沉降变形分为三个区段,并分别提出了各区段桩体与土体沉降变形计算模型,进而基于圆孔扩张理论论建立了考虑桩土滑移与桩体鼓胀变形的串联式组合桩复合地基沉降变形计算方法,并提出了复合地基沉降变形计算方法中6个参数的确定方法。同时,为考虑桩体鼓胀变形引起的桩周侧向约束力对复合地基沉降的影响,基于改进的应变楔理论,提出了串联式组合桩复合地基沉降变形计算方法,确定了复合地基沉降变形计算中3个参数的取值方法与原则。并依托工程实例,对2种串联式组合桩复合地基沉降变形计算方法进行对比分析,阐述了考虑滑移和鼓胀变形的复合地基沉降变形计算结果偏大,但计算参数获取直接且设计偏于保守,而基于改进应变楔模型的复合地基沉降计算更能反映工程实际,但存在获取计算参数的不确定性。再次,基于串联式组合桩各桩段构成材料的物理特性,结合离散-连续耦合理论,视串联式组合桩中碎石桩段为离散元实体结构,在离散元实体结构周围区域采用连续实体结构,即视浆固碎石桩段与混凝土桩段为连续元实体结构,建立离散-连续(FLAC-PFC)耦合数值计算模型,分析了褥垫层参数、混凝土桩段参数、浆固碎石桩段参数、碎石桩段参数、桩身直径、桩间距以及土体模量对串联式组合桩复合地基承载特性的影响,为串联式组合桩复合地基的设计奠定理论基础。最后,依托新建赣州至深圳客运专线某车站软土路基工程,基于高速铁路软土路基技术标准,提出了按工后沉降变形控制的串联式组合桩复合地基设计原则,给出了确定串联式组合桩的桩长、桩径、桩间距以及布桩形式的方法,进而结合本文串联式组合桩复合地基承载力及沉降变形计算理论,对比分析了同设计参数的CFG桩复合地基加固效果,验证了承载力及沉降变形计算理论的可靠性与合理性,实现了采用串联式组合桩加固软土地基的设计理念。串联式组合桩复合地基拓展了复合地基工程实践领域,丰富了组合型复合地基的设计计算理论,为串联式组合桩复合地基的推广与应用提供了理论基础。
詹桂超[4](2019)在《桩土复合路基作用机理及检测方法改进研究》文中研究说明随着社会经济的发展,人们对道路行车舒适性提出更高的要求,而软土路基处理效果是影响行车舒适性关键的因素。目前道路建成后,多数软土路基依然出现较大的工后沉降,以及桥头路段和含结构物路段的“跳车”现象,仍然是一个有待解决的难题。本文研究认为这与现行复合路基质量检测体系不完善有关,尤其是侧重承载能力检测,而忽视工后沉降检测等。本文首先利用理论分析、室内实验、数值模拟等手段,对桩土复合路基及垫层作用机理开展了研究,阐明引入新检测指标的必要性和科学性,并在改进的复合路基静载试验基础上,提出能反映工后沉降情况的衰减沉降率指标。主要研究成果如下:(1)归纳广东省软土分布特点和工程特性,给出适合检测工作实施的桩土复合路基工程分类,并对桩土复合路基作用机理开展了的研究,提出存在合理桩间距和最佳垫层厚度概念等。(2)通过对垫层的受力机理进行分析,研究了垫层摩擦角与厚度、桩间距之间的关系,并建立了相应的计算公式;推演出了砂垫层和碎石垫层摩擦角的计算公式;推演出桩体刺入量的计算公式。(3)通过数值模拟计算手段,分析了土拱效应、垫层压缩性,以及垫层工程特性等对桩土复合路基沉降的影响;建立由静力触探试验结果反算砂垫层相对密度的计算方法;给出了弹性垫层模量和厚度的最优值,提出垫层厚度、模量和强度的最优值概念;并给出各主要因素对沉降的影响规律。(4)通过室内模型试验,研究了垫层厚度、垫层模量对柔性桩和半刚性桩复合路基影响。(5)对复合路基静载试验进行了改进,建立沉降速率和工后沉降的关系式,提出能反应工后沉降的检测指标。本文基于佛山地区某公路工程,分别开展了半柔性桩和CFG桩的“弹性性垫层法”静载试验和“规范法”静载试验,进一步论证了改进检测方法的可行性和可操作性。本文研究成果不仅能减小路基工后沉降、提高软基施工质量,而且为复合路基的建设单位、设计单位、施工单位提供技术指导。
王林[5](2019)在《高速公路软土路基加宽工程施工技术研究》文中进行了进一步梳理近年来我国经济发展水平显着提高,加入世界贸易组织促进了我国物流业的繁荣发展,我国与世界各国的贸易往来越来越密切,贸易的发展加速了运输需求,而随着国内高速公路的交通流量需求不断增大,对我国高速公路运行中通行能力就提出了更高的要求,有关调查表明我国高速公路的实际通行情况普遍高出预计水平(16000辆/每天),是普通国道通车车辆的2.4倍。从目前高速公路的通行情况来看,一些经济发达地区的情况不容乐观,存在交通拥挤现象,因此必须对原有高速公路进行改良。随着高速公路交通运行及需求能力增高趋势下,近年来我国很多旧路进行了改扩建,广佛高速公路改扩建项目就是我国高速公路第一个改扩建工程,其次沪杭高速、沈大等高速公路都进行了相关改扩建施工,在对这些工程进行施工不仅促使我国高速公路扩建积累了一定的施工经验,同时改扩建后这些高速公路也取得了较好的交通通行效率。旧路加宽改造工程的主要特点在于施工过程繁琐、难度系数大,所以需要我们在充分了解高速公路改建要求的基础上提出科学的解决办法,为公路拓宽和改造项目的开发提供有效保护。本文基于高速公路改扩建工程为例,以路基加宽工程施工项目为主要研究对象,对相关技术及应用情况进行了研究。本文以长邯高速公路为实例项目,对长邯高速公路加宽路面的路基和路面施工技术进行了设计、优化方案的比选,并针对路基加宽工程中的相关施工难重点进行了分析,提出了合理的施工技术对策和方案,由于目前在高速公路加宽工程施工的相关研究比重仍旧较少,因此,本文围绕高速公路加宽工程的路基加宽施工技术的研究,以期能够为更多同业者提供借鉴参考。
叶雷[6](2019)在《粉喷桩加固粉煤灰地层试验研究》文中研究说明我国是一个“贫油富煤”的发展中国家,丰富的煤炭资源决定其在我国能源消费中的主导地位,煤炭的消费领域主要集中在火力发电,火力发电的附带品粉煤灰在我国的综合利用率较低下。长期堆存于室外灰场的粉煤灰自然形成粉煤灰地层,这种粉煤灰地层属于软弱地基,在粉煤灰堆场上进行工程建设必须先按规范要求对其进行加固处理。粉喷桩技术是一种在理论研究和工程实践上都较为广泛的复合地基加固技术,目前用粉喷桩法加固粉煤灰这种特殊软土地层在试验研究和工程应用上均较少。本文以淮南市上窑镇旧城改造安置区工程项目为背景,通过室内试验分析粉喷桩强度影响因素并确定水泥粉煤灰的最优掺量,粉喷桩复合地基现场静载荷试验分析粉喷桩及复合地基的受力特性,结合静载试验建立有限元三维模型,分析粉喷桩在竖向力作用下的沉降变形,得到桩体各个位置节点的沉降位移量,用以佐证静载试验。本文为粉喷桩加固大体积深厚度粉煤灰地层的设计和施工提供了重要参考。本文主要成果如下:(1)分析了标段区堆场粉煤灰的物质组成和级配组成等性质;取样试验表明:本场地粉煤灰氧化钙含量占比3.87%,为低钙粉煤灰,烧失量占比1.44%,属于一级灰,粉煤灰含水率样本平均值为46.5%,粉喷桩加固桩长15m,各种条件均能满足粉喷桩复合地基的施工场地要求。(2)室内试验是粉喷桩设计加固粉煤灰地层的重要依据,通过水泥粉煤灰试块的室内试验研究分析,得到水泥粉煤灰试块的一些基本力学参数;研究了水泥量、龄期、试样形状等因素对粉煤灰试块强度的变化规律。工程应用前的室内试验研究可以帮助确定粉喷桩粉料用量,在节约经济成本上也有很大意义。(3)以现场静载试验为标准确定了粉喷桩及粉喷桩复合地基承载力;在对静载试验的Q-s曲线进行分析的基础上,本文通过线性回归方程确定双曲线函数公式,对比试验结果发现该公式能较准确的计算粉喷桩及复合地基承载力,通过双曲线法大大节省了试验的工作量,为粉喷桩施工前的设计阶段提供了一定的理论参考价值。(4)基于粉喷桩复合地基承载力试验,利用ANSYS模拟分析软件对粉喷桩桩土进行建模分析,模拟粉喷桩桩-土接触模型在竖向压力作用下桩体各个位置的变形位移及复合地基的沉降,数据统计得到数值分析结果相较于试验结果偏大,但整体变化趋势保持一致,考虑实际粉喷桩之间的相互作用,模拟结果可说明现场试验的正确性,同时也说明利用有限元对粉喷桩复合地基的建模分析是合理可行的。图34 表15 参68
张其胜[7](2019)在《长板-短桩工法加固软土地基路堤的三维非线性有限元数值模拟》文中认为随着我国交通基础设施建设规模的不断扩大,有必要寻求更为科学有效的软土地基处理方式。排水固结法和粉喷桩复合地基法设计理论相对完善,施工快速简单,被广泛应用于工程实践中,但是两种方法均尚存在其不可避免的不足。结合两者优点的新型软土地基联合处理方法,即长板-短桩复合地基已获成功应用,但既有研究多集中于室内模型试验和现场试验,精细化的数值模拟分析尚未深入开展。本文主要针对长板-短桩复合地基的工程特性和影响因素,开展了三维非线性精细化有限元数值模拟,主要开展的工作如下:(1)通过文献调研和工程调研,扼要介绍了长板-短桩复合地基的组成、布置形式、工法特点和施工工序。(2)讨论了目前路堤荷载作用下复合地基有限元数值模拟的3种方法、分析原理,列举介绍了各自的代表性软件,评析了各种方法的优缺点。其中在利用平面分析法对长板-短桩复合地基开展有限元模拟中,详细介绍了呈空间分布的塑料排水板和粉喷桩的平面应变化方法及其适用条件。(3)基于岩土工程专业有限元软件PLAXIS 3D,分别构建了长板-短桩复合地基、粉喷桩复合地基、塑料排水板处理地基和无处理地基等4种工况的三维非线性有限元数值模型,比较了4种工况地基的沉降、固结特性、稳定安全性和桩土应力比,探究了长板-短桩工法中粉喷桩和塑料排水板各自作用,明确了长板-短桩复合地基的受力特点。(4)利用岩土工程专业有限元软件PLAXIS 3D,建立了长板-短桩复合地基在粉喷桩主要设计参数变化时的多组数值模型,比较分析了长板-短桩复合地基中粉喷桩桩长、桩径和桩间距对地基沉降、侧向位移、超孔隙水压力的影响规律。
龙军[8](2018)在《路堤下双向增强体复合地基受力变形分析》文中提出随着我国高速公路、高速铁路建设的迅猛发展,软弱地基处理问题日益突出,结合水平向加筋垫层和竖直向桩体复合地基的作用特性,双向增强体复合地基技术在工程中被广泛应用,同时对路堤下双向增强体复合地基的理论和试验研究也随之蓬勃发展,但由于其结构组成型式多样,整体作用机理复杂,因此对该软弱地基处置技术的研究显得尤为重要。本文结合国家高技术研究发展计划(863计划)项目“大面积不均匀公路软弱地基按沉降控制双向增强处治技术”(2006AA11Z104),从理论分析和室内模型试验研究入手,对路堤下双向增强体复合地基的承载特性、受力变形、固结特性等方面进行研究。首先对路堤下双向增强体复合地基各组成部分作用特性进行分析;然后对路堤-加筋垫层-桩-桩间土整体承载变形特性分析,通过合理假设建立计算模型,考虑加筋垫层的“网兜效应”,在桩土加固区引入等沉面,桩土间的摩阻力采用Berrum公式计算,通过桩和土体单元的静力平衡以及应力变形边界条件,分别求得加筋垫层上下的桩土应力比。其次,针对已有的路堤土拱理论由于选取的不同土拱模型以及考虑塑性状态和塑性点出现位置的差异导致计算结果差别较大的问题,基于Hewlett土拱理论,考虑上部填土黏聚力影响,引入双剪统一强度理论,同时在桩顶处塑性点分析时,考虑土拱外表面和土拱内表面两个应力边界条件的协调,分别确定塑性点出现在拱顶和桩顶时的荷载分担比,取其最小值作为双向增强体复合地基桩体荷载分担比,并通过一工程实例验证本方方法的可行性。将水平加筋垫层简化为弹性地基上的薄板,当路堤荷载作用下地基沉降量较小时,采用小挠度薄板理论分析,分别采用基于功的互等定理和有限差分法的基本原理求解薄板小挠度解,工程实例计算与实测值吻合较好。当路堤填土过高或是软弱地基性状太差,导致沉降过大时,水平加筋垫层产生过大的挠曲,此时应用大挠度薄板理论分析,采用变参数迭代法,其收敛效果好,先将方程和边界条件无量纲化,将迭代后求解结果回归量纲表达式,求得薄板大挠度解,计算一工程实例,结果与实测值接近。考虑负摩阻力对刚性桩复合地基受力变形影响,分别对中性点上下桩体进行分析,采用更接近实际工况的三折线模型模拟桩和土体下沉时由于势能减小导致的桩土界面的相互作用,基于能量法原理,分析桩单元得到节点力与节点位移方程组,采用迭代法求解方程,得出刚性桩复合地基的桩土荷载分担比、桩身轴力分布、桩体中性点位置和桩侧摩阻力分布。再次,对路堤-加筋垫层-桩-桩间土整体分析,结合路堤下双向增强体复合地基各组成部分的理论研究成果,分析荷载从路堤往下传递至桩土加固区过程中荷载传递路径和变形协调,求解路堤的变形沉降量、桩和桩间土沉降量和荷载分担情况、桩身轴力分布、中性点位置、桩侧摩阻力。采用有限差分法的基本原理,将路基在水平向和竖直向分别划分网格,结合初始条件,确定网格结点任一时刻的水平向和竖直向孔隙水压力,由Carrillo理论确定地基固结度,进而分析路堤-加筋垫层-桩-桩间土受力变形的时效特性。最后,由相似理论原理设计9组室内模型试验,从承载力、沉降、固结方面分别对土工格室加筋垫层、砂井、碎石桩、柔性桩复合地基效用进行分析,同时将其组合,对路堤下“土工格栅+碎石桩”、“土工格室+碎石桩”、“土工格栅+柔性桩”、“土工格室+柔性桩”作用效用进行对比分析,获得有益工程应用的结论。
郭金玲[9](2018)在《粉喷桩加固软土地基对周围结构及地基的影响分析》文中研究指明由于粉喷桩有施工速度快、噪音小等优点,广泛应用于我国土建、水利、交通工程中,但粉喷法作为常用的地基处理技术,其承载和变形机理极为复杂,且工程应用水平超出理论研究水平的现状,使我们有必要对其进行深入的分析。本文以山东东营某地区厂区地基加固工程为背景,采用有限元分析软件MIDAS/GTS建立桩-土复合地基模型,扩大原有地基处理范围,补充部分粉喷桩对原厂房地基进行加固处理,分别采用二维与三维模型分析施工过程及施工完成且土体稳定后的变形情况,主要研究内容如下:(1)分析粉喷桩在施工过程中喷水泥粉时的喷射压力大小对地基变形的影响,以及由于喷射压力,产生的超孔隙水压力的扩散范围与消散时间的基本规律,为水泥搅拌桩的设计与施工提供理论支撑:(2)对厂房自重荷载下,采用粉喷桩加固复合地基后土体的沉降特性进行数值模拟分析,着重对施工稳定后复合地基的沉降与桩长、桩距的关系进行研究,得出地基加固后复合地基的位移及应力变化的基本规律,对粉喷桩加固软土地基后桩周土体的变形进行研究,通过对土体变形的分析,得出相应的结论,可为实际工程地基处理提供理论指导。
杨鹏[10](2018)在《刚柔性长短桩加固双层软土地基研究》文中研究表明利用吹填淤泥填海造陆是缓解沿海地区土地资源紧张的重要手段,而由吹填淤泥和天然海相沉积软土形成的双层软土地基处理是工程界面临的技术挑战。连云港港旗台作业区某铁路修建在由经真空预压初步处理后的吹填软土层和天然海相沉积软土层组成的软土地基上,为同时满足承载力和沉降的要求,在预制方桩地基基础上,采用钉型粉喷桩加固上部软弱吹填土层,形成预制方桩+钉型粉喷桩复合地基。本文依托该铁路软土地基处理工程,通过现场试验、室内试验和数值分析等方法对预制方桩+钉型粉喷桩复合地基处理双层软土地基的加固效果及加固机理等进行研究,在此基础上提出路堤荷载下刚柔性长短桩实用设计计算方法。论文主要研究内容和成果如下:(1)通过室内试验,从物理性质和力学性质等方面对比分析了吹填土与天然海相沉积软土的工程性质,结果表明吹填土工程性质差于海相沉积软土,试验场地为典型的双层软土地基。软土层具有含水率高、压缩性大、渗透性小及土体欠固结等特点。(2)开展了带帽预制方桩联合钉型粉喷桩处理双层软土地基现场试验研究。明确了载荷试验条件下,预制方桩和钉型粉喷桩的承载特性;分析了路堤荷载下预制方桩联合钉型粉喷桩加固地基的变形和桩土荷载分担规律,为刚柔性长短桩地基的设计提供依据。(3)采用ABAQUS数值分析软件分别建立了刚柔性长短桩、刚性长桩、柔性短桩加固地基的数值分析模型,讨论了刚性长桩和柔性短桩对改善地基性能的贡献,从土拱效应和拉膜效应两方面探讨了路堤荷载下刚柔性长短桩加固地基的机理。分析结果表明,刚性长桩是沉降和承载控制主要结构,柔性短桩能显着减小桩土差异沉降,降低刚性长桩应力集中,提高桩间土的承载能力。(4)开展了刚柔性长短桩复合路堤数值计算参数分析,从沉降变形、桩土应力及格栅拉力等方面分析了刚性长桩、柔性短桩、垫层、土工格栅及路基填料参数对复合地基性状的影响规律,给出了各设计参数的合理取值建议值。结合现场试验及数值分析结果提出了路堤荷载下刚柔性长短桩加固双层软土地基的实用设计计算方法。
二、粉喷桩加固软土地基的工程实例与分析(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、粉喷桩加固软土地基的工程实例与分析(论文提纲范文)
(1)深厚软土地基运营公路桥头跳车非开挖处治技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 前言 |
1.1 研究背景与研究目的 |
1.2 国内外研究现状及发展动态分析 |
1.2.1 桥头跳车处治现状分析 |
1.2.2 运营公路桥头跳车非开挖处治现状 |
1.3 研究内容及技术路线图 |
1.3.1 研究内容 |
1.3.2 技术路线图 |
第二章 深厚软基区运营公路桥头跳车工程概况 |
2.1 公路桥头跳车背景 |
2.2 区域地质环境概况 |
2.2.1 地理位置和交通 |
2.2.2 地质条件综述 |
2.2.3 地层岩性 |
2.2.4 场地地震效应 |
2.2.5 水文地质条件 |
2.2.6 不良地质 |
2.3 桥头路基历年加铺数据分析 |
2.4 桥头跳车形成因素、现状及机理分析 |
2.4.1 桥头跳车形成因素分析 |
2.4.2 沉降现状及机理分析 |
第三章 沉降理论计算与预测 |
3.1 沉降计算的概述 |
3.2 计算横断面的选取和确定 |
3.3 计算方法与参数的选取 |
3.3.1 公式选择 |
3.3.2 计算参数选取 |
3.4 桥头路堤沉降计算与评价 |
3.4.1 路堤荷载下地基附加应力计算 |
3.4.2 沉降计算结果与评价 |
3.5 本章小结 |
第四章 三维数值模拟研究下的沉降计算 |
4.1 FLAC3D基本原理及主要特点 |
4.1.1 有限差分近似 |
4.1.2 运动方程 |
4.1.3 力学时步原理 |
4.2 FLAC3D流固耦合相互作用分析 |
4.2.1 模型的建立及力学参数的选取 |
4.2.2 模型计算与结果分析 |
4.3 本章小结 |
第五章 桥头跳车非开挖处治和施工稳定性分析 |
5.1 桥头跳车病害治理原则 |
5.2 桥头跳车病害段治理思路和处治措施 |
5.2.1 治理思路 |
5.2.2 处治措施 |
5.2.3 处治方案比选 |
5.2.4 处治方案选择 |
5.3 桥头跳车治理措施的数值模拟分析的三维数值模拟研究 |
5.3.1 路堤横向引孔置换轻质材料的的三维数值模拟研究 |
5.3.2 侧向辐射注浆加固地基土的的三维数值模拟研究 |
5.3.3 组合方案下的三维数值模拟研究 |
5.4 置换施工稳定性分析的三维数值模拟研究 |
5.4.1 参数选取及工况确定 |
5.4.2 模型建立与结果分析 |
5.5 本章小结 |
第六章 总结 |
6.1 主要结论 |
6.2 本次研究不足及建议 |
致谢 |
参考文献 |
在学期间发表的论文和取得的学术成果 |
1、攻读硕士学位期间发表的论着和专利 |
2、攻读硕士学位期间参与的科研项目 |
3、攻读硕士学位期间参与的工程实践 |
(2)粉喷桩技术在加固软土地基工程中的应用研究(论文提纲范文)
0 引言 |
1 工程背景 |
1.1 工程概况 |
1.2 地质条件 |
2 粉喷桩加固地基设计分析 |
2.1 加固原理 |
2.2 加固设计 |
3 粉喷桩在软土地基中的加固技术分析 |
3.1 工艺性试桩参数确定 |
3.2 粉喷桩在软土地基施工工艺 |
3.3 关键施工工艺的质量控制要点 |
4 加固地基的性能检测 |
5 结论 |
(3)串联式组合桩复合地基承载机理及其设计计算方法研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 复合地基概述 |
1.1.1 复合地基的概念 |
1.1.2 复合地基的分类 |
1.1.3 复合地基的特点 |
1.2 组合型复合地基的应用与发展概况 |
1.2.1 双向增强复合地基的应用与发展概况 |
1.2.2 组合桩型复合地基的应用与发展概况 |
1.3 组合型复合地基的研究现状 |
1.3.1 组合型复合地基承载机理研究现状 |
1.3.2 组合型复合地基承载力计算方法研究现状 |
1.3.3 组合型复合地基沉降变形计算方法研究现状 |
1.3.4 组合型复合地基研究现状的评述 |
1.4 研究内容 |
第2章 串联式组合桩复合地基结构及其工程特性 |
2.1 概述 |
2.2 复合地基组成材料的工程特性 |
2.2.1 基体材料的工程特性 |
2.2.2 增强体的工程特性 |
2.3 串联式组合桩的组成及其结构设计 |
2.3.1 设计背景与启发 |
2.3.2 桩体结构设计 |
2.4 串联式组合桩复合地基的施工技术与方法 |
2.4.1 施工前的准备工作 |
2.4.2 成桩工艺及施工参数 |
2.4.3 施工中应注意的问题 |
本章小结 |
第3章 串联式组合桩复合地基承载机理研究 |
3.1 概述 |
3.2 串联式组合桩复合地基荷载传递机理 |
3.2.1 桩体荷载传递机理 |
3.2.2 桩土体系的荷载传递机理 |
3.2.3 串联式组合桩荷载传递机理 |
3.3 串联式组合桩的力学模型 |
3.3.1 基本假定 |
3.3.2 荷载传递函数 |
3.3.3 力学计算模型 |
3.3.4 微分控制方程的建立与求解 |
3.4 影响串联式组合桩复合地基主要受力变形的因素 |
本章小结 |
第4章 串联式组合桩复合地基的受力变形分析 |
4.1 概述 |
4.2 复合地基受力变形分析的基本方法 |
4.2.1 复合地基承载力计算基本方法 |
4.2.2 复合地基沉降计算基本方法 |
4.3 基于滑块破坏理论的串联式组合桩复合地基承载力计算方法 |
4.3.1 滑块平衡法原理 |
4.3.2 极限承载力计算模型 |
4.3.3 极限承载力计算 |
4.4 考虑滑移与鼓胀变形的串联式组合桩复合地基沉降计算方法 |
4.4.1 沉降计算模型 |
4.4.2 加固区土层压缩变形量计算 |
4.4.3 下卧层土层压缩量计算 |
4.4.4 确定相关计算参数的方法 |
4.5 基于改进应变楔模型的串联式组合桩复合地基沉降计算方法 |
4.5.1 应变楔模型 |
4.5.2 沉降变形计算 |
4.5.3 相关参数的取值 |
4.6 计算实例分析 |
本章小结 |
第5章 串联式组合桩复合地基参数敏感性分析 |
5.1 概述 |
5.2 离散-连续耦合理论 |
5.2.1 离散颗粒与连续单元的接触传递作用 |
5.2.2 离散颗粒与连续单元的耦合计算理论 |
5.3 PFC-FLAC耦合数值计算模型 |
5.3.1 数值计算模型 |
5.3.2 本构模型 |
5.3.3 计算参数 |
5.3.4 数值模拟软件的耦合计算实现 |
5.3.5 数值计算模型可靠性验证 |
5.4 褥垫层参数对串联式组合桩复合地基承载特性的影响 |
5.4.1 褥垫层厚度对串联式组合桩复合地基承载特性的影响 |
5.4.2 褥垫层模量对串联式组合桩复合地基承载特性的影响 |
5.5 桩段参数对串联式组合桩复合地基承载特性的影响 |
5.5.1 桩段长度对串联式组合桩复合地基承载特性的影响 |
5.5.2 桩段模量对串联式组合桩复合地基承载特性的影响 |
5.6 桩直径对串联式组合桩复合地基承载特性的影响 |
5.7 桩间距对串联式组合桩复合地基承载特性的影响分析 |
5.8 土体模量对串联式组合桩复合地基承载特性的影响分析 |
5.8.1 加固层土体模量对串联式组合桩复合地基承载特性的影响 |
5.8.2 下卧层土体模量对串联式组合桩复合地基承载特性的影响 |
本章小结 |
第6章 串联式组合桩复合地基设计与工程应用研究 |
6.1 概述 |
6.2 工程基本概况 |
6.2.1 项目概况 |
6.2.2 工程地质条件 |
6.2.3 水文地质条件 |
6.3 串联式组合桩复合地基的设计方案 |
6.3.1 设计原则 |
6.3.2 技术标准 |
6.3.3 设计参数 |
6.4 现场试验 |
6.4.1 单桩竖向承载力试验 |
6.4.2 复合地基承载力试验 |
6.5 工程应用效果分析 |
本章小结 |
结论与展望 |
参考文献 |
致谢 |
附录 A(攻读学位期间发表的学术论文和参与科研项目) |
(4)桩土复合路基作用机理及检测方法改进研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 复合路基的加固机理 |
1.2.2 检测方法与评价系统 |
1.2.3 试验手段和数值模拟 |
1.3 主要研究内容 |
第二章 桩土复合路基的分类及作用机理分析 |
2.1 广东省软土分布及特点 |
2.1.1 分布情况 |
2.1.2 软土工程特点 |
2.2 桩土复合路基中桩体的工程分类 |
2.2.1 桩体强度分类 |
2.2.2 桩土复合路基工程分类 |
2.3 桩土复合路基作用机理的理论研究 |
2.3.1 桩间土的应力和变形计算 |
2.3.2 桩体的应力和变形计算 |
2.3.3 变形协调方程 |
2.3.4 参数确定 |
2.4 本章小结 |
第三章 垫层作用机理与控制参数研究 |
3.1 垫层作用机理分析 |
3.1.1 垫层的受力机理 |
3.1.2 破坏面深度小于垫层厚度 |
3.1.3 破坏面深度大于垫层厚度 |
3.1.4 桩间距对垫层厚度影响 |
3.1.5 最佳垫层厚度、最优桩中心距分析 |
3.2 控制参数研究 |
3.2.1 垫层摩擦角 |
3.2.2 垫层刺入量 |
3.3 本章小结 |
第四章 桩土复合路基沉降影响因素研究 |
4.1 土中拱效应对沉降的影响 |
4.1.1 复合路基土拱效应机理 |
4.1.2 垫层影响因素分析 |
4.1.3 桩体影响因素分析 |
4.2 垫层压缩性对沉降的影响 |
4.2.1 砂土压缩性的描述 |
4.2.2 考虑砂土压缩性的静力触探试验计算 |
4.2.3 相对密实度的室内试验 |
4.2.4 试验结果分析 |
4.3 垫层工程特性对沉降的影响 |
4.3.1 垫层厚度作用分析 |
4.3.2 垫层模量作用分析 |
4.3.3 垫层强度特性作用分析 |
4.4 本章小结 |
第五章 桩土复合路基的模型试验研究 |
5.1 试验装置 |
5.2 模型试验方案 |
5.3 柔性桩复合路基模型试验结果分析 |
5.3.1 垫层厚度的影响 |
5.3.2 垫层模量的影响 |
5.4 半刚性桩复合路基模型试验结果分析 |
5.4.1 垫层厚度的影响 |
5.4.2 垫层模量的影响 |
5.5 本章小结 |
第六章 桩土复合路基的现场试验研究 |
6.1 弹性垫层法静载试验研究 |
6.1.1 半刚性桩静载试验研究 |
6.1.2 柔性桩静载试验研究 |
6.2 延时持载的现场试验 |
6.2.1 试验方案 |
6.2.2 现场试验 |
6.2.3 试验结果分析 |
6.2.4 工后沉降评价指标理论研究 |
6.3 复合路基静载试验 |
6.3.1 复合路基静载试验 |
6.3.2 复合路基静载延时试验 |
6.3.3 试验结果分析 |
6.4 本章小结 |
结论与展望 |
结论 |
展望 |
参考文献 |
致谢 |
(5)高速公路软土路基加宽工程施工技术研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 研究现状 |
1.3 研究内容与方法 |
第二章 高速公路加宽工程病害机理与处理方法 |
2.1 高速公路加宽工程主要病害 |
2.2 加宽工程病害形成的原因 |
2.3 高速公路加宽病害处理方法 |
2.4 高速公路地基常见破坏机理及处理方法 |
2.5 CFG桩设计原理及施工要点 |
2.6 高压旋喷桩加固地基的机理及施工要点 |
第三章 高速公路路基加宽软土地基处理效果对比研究 |
3.1 工况概述 |
3.2 地质条件 |
3.3 试验概况 |
3.4 旋喷桩复合地基设计 |
3.5 CFG桩复合地基与其他地基对比分析 |
第四章 桥头路基加宽流态粉煤灰处治技术研究 |
4.1 桥头路基坑与台背回填 |
4.2 液态粉煤灰回填施工技术 |
4.3 路桥过渡段加宽路基冬季备土堆载预压 |
第五章 高速公路路基加宽施工组织设计 |
5.1 高速公路加宽施工组织设计总体思路 |
5.2 长邯高速加宽扩建施工中的交通组织 |
5.3 长邯高速加宽扩建工程施工技术方案 |
5.4 小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
致谢 |
(6)粉喷桩加固粉煤灰地层试验研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 粉煤灰及粉煤灰地层的研究现状 |
1.2.2 粉喷桩加固软土地基的研究现状 |
1.3 研究课题的提出 |
1.4 研究方法及路线 |
1.4.1 研究内容和方法 |
1.4.2 研究技术路线 |
2 粉喷桩加固粉煤灰地层机理及设计方法 |
2.1 粉喷桩加固粉煤灰地层的基本理论 |
2.1.1 加固粉料与粉煤灰的物质组成 |
2.1.2 粉料与粉煤灰的反应机理 |
2.2 粉煤灰与水泥的继续作用 |
2.2.1 凝硬反应 |
2.2.2 钙化反应 |
2.3 粉喷桩复合地基的设计及验算方法 |
2.3.1 选定桩型 |
2.3.2 粉喷桩的平面布置 |
2.3.3 粉喷桩及复合地基的设计计算 |
3 粉喷桩加固粉煤灰地层室内试验研究 |
3.1 概述 |
3.2 室内试验方法 |
3.2.1 主要试验设备仪器 |
3.2.2 粉煤灰土样 |
3.2.3 粉喷桩加固粉料和外掺剂 |
3.2.4 水泥加固粉煤灰试件的配比 |
3.2.5 堆场粉煤灰的含水率 |
3.2.6 水泥粉煤灰试样的制备 |
3.3 试验结果及分析 |
3.3.1 直剪试验结果及分析 |
3.3.2 粉煤灰试块抗压强度试验结果及分析 |
3.4 本章小结 |
4 粉喷桩加固粉煤灰地层静载试验 |
4.1 粉喷桩加固粉煤灰地层工程概况 |
4.2 粉喷桩静载试验目的 |
4.3 试验依据 |
4.4 试验装置及试验方法 |
4.4.1 加载反力装置 |
4.4.2 试验方法及承载力确定 |
4.4.3 静载试验结果及分析 |
4.5 双曲线函数的拟合 |
4.6 本章小结 |
5 粉喷桩复合地基有限元分析 |
5.1 概述 |
5.2 粉喷桩桩-土接触有限元模型 |
5.2.1 土体本构模型 |
5.2.2 模型参数选取 |
5.3 有限元模型建立与求解 |
5.4 有限元结果分析 |
5.4.1 单桩承载力试验模拟结果分析 |
5.4.2 粉喷桩复合地基承载力试验模拟结果分析 |
5.5 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(7)长板-短桩工法加固软土地基路堤的三维非线性有限元数值模拟(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 塑料排水板处治软土地基研究 |
1.2.1 塑料排水板预压法的发展和特点 |
1.2.2 塑料排水板预压加固原理 |
1.3 粉喷桩处治软土地基研究 |
1.3.1 粉喷桩的发展和特点 |
1.3.2 粉喷桩加固原理 |
1.4 长板-短桩工法加固软土地基研究 |
1.5 本文的主要研究内容及技术路线 |
第2章 长板-短桩工法简介 |
2.1 概述 |
2.2 长板-短桩复合地基的组成 |
2.3 长板-短桩复合地基的布置 |
2.4 长板-短桩复合地基的施工 |
2.5 本章小结 |
第3章 长板-短桩复合地基数值模拟方法探讨 |
3.1 概述 |
3.2 平面变形分析法 |
3.2.1 塑料排水板的平面简化 |
3.2.2 粉喷桩的平面简化 |
3.2.3 代表性软件PLAXIS简介 |
3.3 平面变形-空间渗流分析法 |
3.3.1 平面变形-空间渗流固结理论 |
3.3.2 代表性有限元程序PDSS简介 |
3.4 空间变形-空间渗流分析法 |
3.4.1 比奥三维固结理论 |
3.4.2 代表性软件PLAXIS3D简介 |
3.5 本章小结 |
第4章 长板-短桩工法加固软土地基路堤效果初探 |
4.1 概述 |
4.2 塑料排水板和粉喷桩在PLAXIS3D软件中的模拟实现 |
4.3 数值模型的构建 |
4.3.1 几何模型 |
4.3.2 材料模型和参数 |
4.3.3 网格划分 |
4.3.4 边界条件和施工工序 |
4.4 长板-短桩复合地基空间变形、空间渗流的特征 |
4.4.1 沉降分布规律 |
4.4.2 超孔隙水压分布规律 |
4.5 不同加固方式处治效果、规律对比 |
4.5.1 沉降规律 |
4.5.2 地基侧向位移 |
4.5.3 超孔隙水压力 |
4.5.4 路堤稳定安全性 |
4.5.5 桩土应力比 |
4.6 长板-短桩复合地基的特点 |
4.7 本章小结 |
第5章 长板-短桩复合地基设计参数的影响分析 |
5.1 概述 |
5.2 桩长对长板-短桩复合地基的影响 |
5.2.1 地基沉降 |
5.2.2 地基侧向位移 |
5.2.3 地基超孔隙水压力 |
5.3 桩径对长板-短桩复合地基的影响 |
5.3.1 地基沉降 |
5.3.2 地基侧向位移 |
5.3.3 地基超孔隙水压力 |
5.4 桩间距对长板-短桩复合地基的影响 |
5.4.1 地表沉降 |
5.4.2 地基侧向位移 |
5.4.3 地基超孔隙水压力 |
5.5 本章小结 |
结论与展望 |
结论 |
展望 |
致谢 |
参考文献 |
攻读硕士学位期间发表的论文及科研成果 |
(8)路堤下双向增强体复合地基受力变形分析(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 复合地基概述及其分类 |
1.2 竖向桩体复合地基应用研究现状 |
1.2.1 散体材料桩复合地基 |
1.2.2 柔性桩复合地基 |
1.2.3 刚性桩复合地基 |
1.2.4 多元桩复合地基 |
1.3 水平向增强体复合地基应用研究现状 |
1.4 双向增强体复合地基应用研究现状 |
1.4.1 双向增强体复合地基应用现状 |
1.4.2 双向增强体复合地基承载特性研究 |
1.4.3 双向增强体复合地基沉降特性研究 |
1.4.4 双向增强体复合地基固结特性研究 |
1.4.5 双向增强体复合地基试验研究 |
1.5 本文研究内容和思路 |
1.5.1 本文研究内容 |
1.5.2 本文研究思路 |
第2章 路堤下双向增强体复合地基承载特性研究 |
2.1 概述 |
2.2 路堤土拱效应分析 |
2.3 水平加筋垫层承载特性 |
2.3.1 土工合成材料的效用 |
2.3.2 褥垫层的效用 |
2.3.3 水平加筋垫层加固机理 |
2.3.4 水平加筋垫层承载变形特性 |
2.4 竖向桩体承载特性 |
2.4.1 散体材料桩承载特性 |
2.4.2 刚性桩承载特性 |
2.4.3 柔性桩承载特性 |
2.4.4 多元复合地基承载特性 |
2.5 路堤下双向增强体复合地基承载特性 |
2.5.1 计算模型的建立 |
2.5.2 受力变形分析 |
2.5.3 计算方程求解 |
2.5.4 工程实例分析 |
2.6 小结 |
第3章 基于双剪统一强度理论的路堤土拱效应分析 |
3.1 概述 |
3.2 土拱效应分析 |
3.2.1 土拱模型改进 |
3.2.2 土体塑性理论分析 |
3.2.3 土拱效应分析 |
3.3 算例验证 |
3.4 小结 |
第4章 基于薄板理论的水平加筋垫层分析 |
4.1 概述 |
4.2 基于功的互等定理分析 |
4.2.1 功的互等定理 |
4.2.2 薄板计算模型 |
4.2.3 薄板功的互等定理分析 |
4.2.4 算例验证 |
4.2.5 参数分析 |
4.3 薄板有限差分法分析 |
4.3.1 有限差分法分析 |
4.3.2 薄板计算模型 |
4.3.3 有限差分法方程解答 |
4.3.4 算例分析 |
4.3.5 参数分析 |
4.4 大挠度薄板理论分析 |
4.4.1 计算模型及基本微分方程 |
4.4.2 基本微分方程求解 |
4.4.3 算例验证 |
4.4.4 参数分析 |
4.5 小结 |
第5章 路堤下双向增强体复合地基受力变形分析 |
5.1 概述 |
5.2 基于能量法的桩体复合地基受力变形分析 |
5.2.1 计算模型建立 |
5.2.2 桩体边界条件确定 |
5.2.3 能量法基本原理 |
5.2.4 桩体能量法分析 |
5.2.5 桩间土体分析 |
5.2.6 协调方程 |
5.2.7 方程求解 |
5.2.8 工程实例分析 |
5.3 路堤下双向增强体复合地基受力变形分析 |
5.3.1 路堤内土拱效应分析 |
5.3.2 水平加筋垫层的薄板理论分析 |
5.3.3 桩体复合地基能量法分析 |
5.3.4 路堤下双向增强体复合地基受力变形计算 |
5.3.5 算例分析 |
5.4 小结 |
第6章 路堤下双向增强体复合地基时效特性分析 |
6.1 概述 |
6.2 土体固结分析 |
6.2.1 桩间土体固结有限差分法分析 |
6.2.2 桩间土体固结度计算 |
6.3 桩体时效特性分析 |
6.4 考虑时效的桩土应力比计算 |
6.5 考虑时效的沉降计算 |
6.6 工程实例分析 |
6.7 小结 |
第7章 路堤下双向增强体复合地基室内模型试验研究 |
7.1 概述 |
7.2 相似理论 |
7.2.1 物理模拟和数学模拟 |
7.2.2 相似理论三大定理 |
7.2.3 相似准则导出方法 |
7.3 基于相似理论的模型试验设计 |
7.3.1 模型试验的相似准则 |
7.3.2 模型试验方案设计 |
7.3.3 试验相似条件确定 |
7.3.4 试验材料选取 |
7.3.5 试验装置 |
7.3.6 试验仪器布置 |
7.3.7 试验方法 |
7.4 试验成果分析 |
7.4.1 载荷试验成果分析 |
7.4.2 实测应力分析 |
7.4.3 孔隙水压力测试成果分析 |
7.5 小结 |
结论与展望 |
参考文献 |
致谢 |
附录A 攻读学位期间所发表的学术论文 |
(9)粉喷桩加固软土地基对周围结构及地基的影响分析(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.1.1 研究课题的提出 |
1.1.2 研究课题的意义 |
1.2 粉喷桩加固软土地基机理 |
1.2.1 粉喷桩施工方法 |
1.2.2 粉喷桩加固软土地基原理 |
1.2.3 粉喷桩性能及技术优点 |
1.2.4 粉喷桩施工过程孔隙水压力的影响 |
1.3 软土地基加固的研究现状 |
1.3.1 粉喷桩加固软土地基的国外研究现状 |
1.3.2 粉喷桩加固软土地基的国内研究现状 |
1.4 工程概况 |
1.5 本文的主要研究内容 |
2 粉喷桩加固软土地基的理论研究 |
2.1 桩-土的本构模型 |
2.1.1 线弹性模型 |
2.1.2 修正摩尔-库伦模型 |
2.2 粉喷桩施工应力分析 |
2.2.1 喷粉搅拌过程的应力分析 |
2.2.2 粉喷桩搅拌过程中超孔隙水压力分析 |
2.3 单桩竖向荷载传递机理 |
2.3.1 桩土的荷载传递 |
2.3.2 单桩设计 |
2.3.3 荷载传递法 |
2.3.4 桩-土荷载传递函数形式 |
2.4 竖向荷载作用下群桩计算理论 |
2.4.1 置换率和桩数计算 |
2.4.2 下卧层地基验算 |
2.5 粉喷桩复合地基沉降计算 |
2.5.1 单桩沉降计算 |
2.5.2 复合地基沉降计算 |
2.5.3 加固区下卧层变形量2s的计算 |
3 粉喷桩施工对周边环境影响数值模拟 |
3.1 有限元单元法与软件MIDAS/GTS简介 |
3.1.1 MIDAS/GTS软件概述 |
3.1.2 有限单元法 |
3.2 粉喷桩施工对周边环境影响数值模拟 |
3.2.1 模型参数及网格单元划分 |
3.2.2 粉喷桩施工对桩周土体影响 |
3.2.3 粉喷桩施工产生的超孔隙水压对周边环境的影响 |
3.3 本章小结 |
4 粉喷桩复合地基有限元分析 |
4.1 计算模型的建立 |
4.1.1 模型的单元划分 |
4.1.2 模型的边界条件 |
4.2 粉喷桩复合地基方案沉降影响模拟计算 |
4.3 桩长对复合地基沉降量的影响 |
4.3.1 计算模型的建立 |
4.3.2 桩长不同对地基沉降量的影响 |
4.3.3 桩长不同引起复合地基中应力场的变化规律 |
4.4 桩间距对复合地基沉降量的影响 |
4.5 本章小结 |
5 结论与展望 |
5.1 结论 |
5.2 展望 |
致谢 |
参考文献 |
附录 |
(10)刚柔性长短桩加固双层软土地基研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.2.1 刚性桩承式加筋路堤 |
1.2.2 刚柔性桩承式加筋路堤 |
1.3 存在的问题 |
1.4 本文研究内容及技术路线 |
1.4.1 主要研究内容 |
1.4.2 研究技术路线 |
第二章 连云港港区软土工程性质分析 |
2.1 工程地质条件 |
2.1.1 工程概况 |
2.1.2 工程地质条件 |
2.2 软土物理性质分析 |
2.2.1 颗粒组成 |
2.2.2 基本物理性质 |
2.3 软土力学性质分析 |
2.3.1 变形特性 |
2.3.2 强度特性 |
2.3.3 渗透特性 |
2.4 本章小结 |
第三章 路堤荷载下刚柔性长短桩地基性状现场试验 |
3.1 现场软基处理与试验方案 |
3.1.1 软基加固方案 |
3.1.2 现场试验方案 |
3.2 地基承载力静载荷试验结果与分析 |
3.2.1 钉型粉喷桩承载力 |
3.2.2 预制方桩承载力 |
3.3 路堤荷载下地基变形性状分析 |
3.3.1 路堤填筑与沉降 |
3.3.2 侧向位移 |
3.3.3 孔隙水压力 |
3.4 路堤荷载下桩土压力性状分析 |
3.4.1 土压力及桩土应力比 |
3.4.2 桩土荷载分担 |
3.5 本章小结 |
第四章 路堤荷载下刚柔性长短桩加固软基数值模拟 |
4.1 数值分析模型建立与验证 |
4.1.1 数值模型与计算参数 |
4.1.2 模型验证 |
4.2 不同加固工况下地基性状对比分析 |
4.2.1 地基沉降 |
4.2.2 桩土压力 |
4.2.3 桩身应力 |
4.2.4 格栅变形 |
4.3 路堤荷载下刚柔性长短桩加固机理分析 |
4.3.1 土拱效应 |
4.3.2 拉膜效应 |
4.4 本章小结 |
第五章 路堤荷载下刚柔性长短桩加固软基参数分析 |
5.1 参数分析计算方案 |
5.2 刚性长桩设计参数变化影响分析 |
5.2.1 刚性长桩桩长 |
5.2.2 面积置换率 |
5.3 柔性短桩设计参数变化影响分析 |
5.4 垫层设计参数变化影响分析 |
5.4.1 垫层厚度 |
5.4.2 格栅抗拉刚度 |
5.5 路基填料设计参数变化影响分析 |
5.6 本章结论 |
第六章 路堤荷载下刚柔性长短桩实用设计方法 |
6.1 设计思路及计算流程 |
6.1.1 设计思路 |
6.1.2 设计计算 |
6.2 工程实例设计计算 |
6.3 施工工艺与质量控制 |
6.3.1 施工工艺 |
6.3.2 质量检测 |
6.4 本章小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
攻读硕士学位期间发表的论文 |
致谢 |
四、粉喷桩加固软土地基的工程实例与分析(论文参考文献)
- [1]深厚软土地基运营公路桥头跳车非开挖处治技术研究[D]. 冯彦铭. 重庆交通大学, 2020(01)
- [2]粉喷桩技术在加固软土地基工程中的应用研究[J]. 梅健. 四川水泥, 2020(01)
- [3]串联式组合桩复合地基承载机理及其设计计算方法研究[D]. 郭尤林. 湖南大学, 2019
- [4]桩土复合路基作用机理及检测方法改进研究[D]. 詹桂超. 广东工业大学, 2019(02)
- [5]高速公路软土路基加宽工程施工技术研究[D]. 王林. 长安大学, 2019(07)
- [6]粉喷桩加固粉煤灰地层试验研究[D]. 叶雷. 安徽理工大学, 2019(01)
- [7]长板-短桩工法加固软土地基路堤的三维非线性有限元数值模拟[D]. 张其胜. 西南交通大学, 2019
- [8]路堤下双向增强体复合地基受力变形分析[D]. 龙军. 湖南大学, 2018(06)
- [9]粉喷桩加固软土地基对周围结构及地基的影响分析[D]. 郭金玲. 西安理工大学, 2018(12)
- [10]刚柔性长短桩加固双层软土地基研究[D]. 杨鹏. 东南大学, 2018(05)